Curing Arthritis and Depression with Diet and Antibiotics

Most chronic diseases are considered incurable. But if cures are rare, it may only be because doctors and patients rarely try the proper dietary and antibiotic therapies.

Two smart commenters who figured out how to make progress against their own chronic diseases refute the notion that disease progression is inevitable.


First, Michelle cured her arthritis with diet and antibiotics:

I’ve successfully put RA into remission using low dose, pulsing antibiotics, based on the work of the late rheumatologist Dr. Thomas McPherson Brown. I’ve been a low dose of Doxycycline, 100 mg, on MWF, for a little over two years now. My joints are no longer reminding me of my arthritis daily.

For background reading, check out “The New Arthritis Breakthrough” by the late Henry Scammell. “Why Arthritis?” by researcher Harold Clark is good too.

A few months before my arthritis reared its ugly head, I gave up gluten. In the last year, I’ve weaned myself off the myriad GF products such as GF cookies, bread & pasta. We’re buying meat from healthy animals a local farm. I’ve gotten reacquainted with butter, cream, and I avoid PUFAs like the plague.

I’m keeping an eye on my fluctuating thyroid function, and fluctuating progesterone levels (I’m 47). Taking probiotics. Checking Vit. d levels.

I’m sure all the positive changes have contributed to the remission, but I feel certain the low dose pulsing antibiotics got me over the hump.

I noted that many if not all cases of arthritis are caused by infections, with C. pneumoniae probably the most common agent, and Michelle replied:

Yes, I had a panel of tests done at The Arthritis Research Center (

The lab checked for strep, plus mycoplasma (M. hominis, M. fermentans, M. salivarium, & M. pneumonia), plus chlamydia (C. pneumoniae, & C. trachomatis).

Ding! Stealth infections!

Michelle’s infections included M. hominis, C. pneumoniae, and C. trachomatis. It’s quite common to have multiple infections, even in the general (“healthy”) population as we noted in this post. So it’s no surprise there was more than one.

Michelle’s doctor recommended low-dose doxycycline (100 mg three days a week), which took 2+ years to cure the arthritis. She might have been cured quicker with a larger dose. As she describes the issue:

I understand there’s controversy about stealth infections. Some say they are very difficult to treat, and one needs to throw the kitchen sink at them— high doses, daily dosing, rotating various antibiotics. My MD felt that many people were having trouble with stealth infections because they were over-treating. High, daily dosing makes the situation worse for many.

When I questioned this, he reasoned that we can always raise the dose later, or switch up antibiotics later. As it turned out, I made progress on a small dose. It was slow going, but 2+ years later, I no longer worry about being crippled by arthritis.

Dosage is a tricky issue.

  • Higher levels of antibiotics are more likely to denude the gut of probiotic bacteria, and populate it with pathogenic species that shelter from the antibiotics in biofilms, or with fungi that are immune to the antibiotics. The loss of probiotic species in the gut can lead to new infections; immune cells go to the gut to fight pathogens there, get infected themselves, and then go to joints to fight infections there, and spread their pathogens into the joints. Thus, there is a potential to add new pathogens to the joint infection, compounding the arthritis.
  • On the other hand, lower levels may be insufficient to clear the infection, or may take inordinately long to do so. If the duration of antibiotics is longer, gut problems may be as severe on low antibiotics as on high.

My own prejudice is “go as fast as you can but no faster,” but clinical experience will teach us the best course in different diseases. In more severe diseases – multiple sclerosis, for instance – low-dose monotherapies have no chance and high-dose combination protocols are needed.

The potential for antibiotics to backfire is why you want to adopt all the dietary and nutritional steps first (in our book Steps 1, 2, and 3), then pursue antibiotics and therapeutic diets (Step 4 in the final version).


Second, Winalot has made progress against depression and suicidal tendencies by eating a ketogenic diet:

I’m zero-carb as I’ve found Ketosis has greatly reduced my depression / suicidal tendencies, however I do worry that this might not be “healthy”.

You mentioned “some mental health and neurological disorders, may benefit from very low-carb “ketogenic” diets” and I was wondering if there’s any more advice you can give on finding that sweet spot?

Ketosis hasn’t cured me, I still have bad days and take SSRI’s but it’s certainly better than boatloading carbs for “serotonin” like I used to.

It’s very smart of Winalot to have found the ketogenic diet. A ketogenic diet has two major benefits for infectious brain diseases:

  1. Ketones induce neuronal autophagy, which means they upregulate the primary intracellular immune defense mechanism against bacterial infections.
  2. Ketones are neuroprotective. One mechanism: They are an alternative energy substrate for neurons. Bacteria steal pyruvate and other glycolytic products for their own energy metabolism, depriving neurons of their main energy source and inducing the cognitive symptoms of hypoglycemia in the brain. But bacteria cannot consume ketones. If ketones are supplied, neurons do not starve. Starvation is probably the main cause of neuronal death in many of these diseases. If you don’t wan’t to suffer the shrinking brain that is so common in Alzheimer’s, multiple sclerosis, and other infectious brain diseases, a ketogenic diet is prudent.

Winalot asked for a “sweet spot” and I gave the following advice:

In general, I recommend 200 starch calories a day. This will not prevent generation of ketones if you take a lot of ketogenic short-chain fats and will protect you against glycoprotein deficiencies leading to bowel cancers and other nasty long-term side effects, not to mention impaired immunity against extracellular pathogens.

This should be accompanied by a boatload of coconut oil for those ketogenic fats. I suggest about 1500 calories / 6 fluid ounces / 12 tbsp coconut oil per day. This sounds like a lot, I know, but it is therapeutic.

Also, get 400 protein calories per day. This is higher than our normal protein recommendation.

Finally, I highly recommend antibiotics, since I believe bacterial infections of the brain (leading to tryptophan sequestration by interferon-gamma and IDO) are far and away the most likely cause of your depression and serotonin deficiency. I would start by assuming this is C. pneumoniae, the most common brain pathogen, and take the Wheldon protocol antibiotics. You can find a good guide at

Tryptophan sequestration is a primary intracellular defense against bacterial infections, and bacterial theft of tryptophan from serotonin also tends to denude infected cells of serotonin. We regard serotonin deficiency symptoms as prima facie evidence for a bacterial infection of the brain. C. pneumoniae is the most common bacterial pathogen in the brain, so antibiotic strategies that are proven against C. pneumoniae are a good place to start against depression.

Doxycycline is a good first antibiotic; it enters the brain well and is active against C. pneumoniae. The response to doxycycline also has diagnostic value. If you don’t have an infection, usually there is no obvious effect to the antibiotic. If you do, there are usually clear effects, either good or bad:

  • Good, because doxycycline is a protein synthesis inhibitor and will slow down bacterial activities that may be damaging you, including tryptophan theft. You may experience euphoria for a few days, followed by richer emotions and relieved depression.
  • Bad, because it may produce either toxicity effects from bacterial die-off (endotoxins and porphyrins) or other side effects. For instance, C. pneumoniae inhibits apoptosis (cell death) of immune cells, and inhibition of protein synthesis will stop this and may be followed by the immediate suicide of most white blood cells. This sudden drop in white blood cell count could lead to a surge in fungal or other infections, lasting several weeks until new white blood cells can be manufactured.

If you notice such effects, continue the doxycycline, but modulate doses so that the bad effects are not too severe. Other antibiotics can be added in combination once the bad effects are modest.


The thesis of this blog is that most chronic diseases can be cured in a two-part process:

  1. Good diet and nutrition should be used to eliminate toxicity syndromes and empower the immune system.
  2. Antibiotics can then be brought to bear against entrenched infections to work a cure.

Diet and nutrition should be the first step. A good diet will clarify symptoms and help diagnose pathogens; minimize antibiotic doses and duration needed for a cure; and minimize die-off effects from bacterial endotoxins and porphyrins during antibiotic treatment.

It’s great to hear from people who are making progress against their diseases. Hopefully, our book and blog can generate many more such cases. Abundant cures will do more than billions in research funding to teach doctors and scientists how to treat these diseases.

The Philosophy of this Blog, With A Parable

One (dis)advantage of the Internet is that it offers a forum for rants: passionate expressions of opinion.

Of course, one man’s passionate opinion can, from another perspective, appear to be nutty-as-a-fruitcake insanity.

My Nutty Post on the Corruption of Medicine

An incisive comment from Christopher M points out that my recent rant on the corruption of medicine is silly:

I think you go too far in your criticism of creeping disease-ification. You seem to have embraced the idea that we should ignore damage and decay to the human body if it is somehow “natural” — i.e., major muscle loss in the aging and elderly. But this is silly. Human suffering, decreased quality of life, and death are problems whenever they occur. Now, maybe the “disease” model isn’t always the best way to think about these questions. But I can’t imagine why we would want to carve out certain forms of decay and suffering as parts of the human experience to tolerate rather than try to avoid — with whatever imperfect means we can.

Now this is obviously correct. Human suffering and decay should be remedied wherever possible.

Christopher could have added to his critique. Doctors, scientists, drug companies, politicians and bureaucrats – all are well-intentioned, eager to heal the sick. How can it be fair to say that their industry is, in some ways, corrupt? Their intentions are good and they work tirelessly in the hope of turning their good intentions into good deeds.

And if they make a lot of money, what of it?  The laborer deserves his wage.

The Black-Box Perspective of Medicine

Conventional medicine is largely based around drug treatment, and drug treatment is based on a reductionist model of human health.

In this model, the human body is a sort of “black box” of which we know little. Drugs are interventions that affect the black box. Health is an output of the black box, characterizable by observable markers (such as, is the black box warm and moving, or cold, stiff, and still?). Medical research is conducted empirically. We do an intervention – provide a drug to the black box – and the black box tells us if it feels better or worse (or we look to see if its box-heart still beats). Millions of drugs are sorted through to find a few thousand that make the black box perform its box-functions a bit better, at least in the short term.

Obviously, this black-box model made a lot of sense before we knew about the human genome, before we could do molecular and cellular biology. It is how our Paleolithic ancestors discovered medicinal herbs. Many early drugs were refined from traditional herbal medicines.

In the modern genomic era, this black-box model of medicine has persisted with a reductionist approach to molecular medicine. Now that we’ve sequenced the human genome and can design drugs to target individual proteins, biologists can at will eradicate the function of any human gene or protein we choose. Much pharmacological research in recent decades has been devoted to “targeting” individual proteins or genes, and seeing if these interventions produce beneficial results in some disease or other.

So, from this perspective, it makes sense to say:  Let’s make a drug that targets a human enzyme – say, HMG-CoA reductase – and see if it can provide any benefits in some disease. Since HMG-CoA reductase is needed to make cholesterol, and cholesterol is correlated with high rates of heart disease (and low rates of infectious disease and cancer), perhaps targeting HMG-CoA reductase will have benefits in heart disease patients. So let’s do a trial, see if HMG-CoA reductase inhibitors make heart attacks less frequent. If so, let’s stuff heart disease patients with these inhibitors at a cost of $25 billion a year.

And this makes great sense – if all you know about human beings is that they resemble black boxes.

An Alternative Perspective

Now step back from that conventional perspective on health, and consider an alternative point of view that extrapolates from a few facts:

  • The human body is the result of a long evolutionary history. Our ancestral genome reached its current size, about 20,000 genes, prior to the Cambrian explosion. For over 500 million years, the thrust of evolution has been to make the gene-protein network as sophisticated as possible, as densely networked with subtle interactions between as many molecules as possible. Every gene has an important role to play in that network, and directly influences perhaps a hundred partners. Thus, targeting a single gene will not only deprive the body of that gene’s function; it will also deprive that gene’s hundred partners of the benefits of its interactions, and thus impair their function, which will have ramifications upon their partners, until the whole genome has been affected. Thus, all interventions in the human body have systemic effects. It is not possible to confine effects to a single “target.”
  • Hundreds of millions of years of selective evolution have optimized the human body to work very well if it obtains appropriate inputs: a good diet that is nutritious and free of toxins.
  • However: the human body is not alone. It is saturated with microbes – trillions of them –which have evolved independently to be effective parasites upon humans. These microbes sabotage the immune system, steal nutrients, obstruct the functioning of human proteins. Their goal is their own reproduction, and human health is only incidental to that goal. Some of them benefit from a healthy host, and these microbes are called “probiotic.” Some benefit from harming their host, and these are called “pathogens.”

From this perspective, what is likely to cause disease? Three factors are most obvious:

  • A malnourishing diet may deprive the body of needed nutrients.
  • Toxins, especially food toxins, may poison the body.
  • Pathogens may sabotage the body in pursuit of their own advantage.

If disease results from these causes, then we are forced to look to diet and nutrition as the first step toward health. And then to infections, which may be treatable with antibiotics, as the second.

If the human body is a highly-optimized densely-networked system, then we must be skeptical toward the “black-box” school of medicine – especially in its new, reductionist, human-gene-targeting form. If evolution has optimized the human gene network to maximize human health, then targeting human genes and proteins is sure to sabotage health, probably in unexpected and insidious ways.

A Parable

I often use economic analogies, because there are a lot of parallels between the cooperative functioning of people in a complex modern economy and the cooperative functioning of cells and molecules in the human body. Let me offer an economic parable.

Imagine a world in which every person manages a complex factory. This factory has tens of thousands of workers, and complicated machinery of thousands of varieties, which all has to work together cooperatively if the output of the factory is to be high.

Suppose that from time to time a factory suffers a loss in output. The workers don’t seem to be as effective; they occasionally fall down and die in the middle of the workday. Machinery breaks down for no apparent reason.

Suppose that, in fact, this is due to an invasion of the factory by malicious monkeys, who steal machinery parts, and ravenous wolves, who kill the workers. Suppose that food poisoning in the factory cafeteria has left the factory security guards and workers weakened and unable to defend themselves and their machines. Suppose further that the malicious monkeys and ravenous wolves are invisible.

One day your factory experiences such a slowdown, and you hire a “factory doctor” to help you fix the problem.  He explains that the reason for the decline in factory output is that your workers and security guards have gone bad. The factory has an “autoimmune” syndrome in which rogue security guards kill workers. Workers have been damaging machine parts. The solution?  Hire a sniper team and kill some workers. Remove the damaged machine parts and don’t replace them. Lock the security guards in the break room. The cost? A mere $20,000 a year, charged to your insurance company.

Now suppose another consultant comes to you.  His explanation: your factory has been invaded by monkeys and wolves. Food poisoning has prevented the security guards from driving them out. His solution?  Give better food to the security guards. Put a fence around the factory to prevent more monkeys and wolves coming in. Find an “infectious monkey and wolf doctor” who can “diagnose” the infection, making the monkeys and wolves visible. Then use his “antibiotic” team of monkey and wolf assassins to kill the invading animals. DO NOT KILL ANY OF YOUR WORKERS OR LOCK UP YOUR SECURITY GUARDS. The cost of this analysis? $25 – free if you can assemble the diagnosis from information scattered across hundreds of blog posts.

The Problem of Underemployed Sniper Teams

Now suppose that factory owners are not hiring enough sniper teams at $20,000 per year. So the factory doctors start going to factories with high output and saying to the owners, “Your factory has pre-disease. Although nearly all your workers and security guards are functioning well, a few have gone rogue. If you hire our sniper team and let us assassinate some security guards and workers, your factory will perform even better. Won’t you hire a few snipers?”

The $25 consultant responds with a nutty rant.


This parable is a work of fantasy. It bears no resemblance to any medical industry or blogger you may have encountered. Any resemblance to any actual medical industry or blogger is purely coincidental.

Welcome, Healthy Skeptics!

One of my favorite blogs is Chris Kresser’s The Healthy Skeptic, so I was quite pleased a few weeks ago when he somehow discovered our blog and purchased a copy of our e-book. I’m even more pleased to see that he liked it:  He’s written a glowing review.

As Chris mentioned, everyone who buys the e-book will receive a free copy of the completed book, expected to be available in October. Simply email your address to and I will see that you receive your free copy as soon as it is available.

As he mentioned, the e-book, which is an early draft, has three sections. The final book will have a fourth, on healing and preventing disease.

The book is the fruit of five years of research and three years of writing. We began studying diet in 2005 in order to learn how to cure our own seemingly incurable chronic diseases. We began writing the book in 2008 partly because of the old axiom – “the best way to learn is to teach”; being forced to sift through the literature carefully would help us refine our ideas – and partly to share what we then knew with friends and family. By 2010 we had actually cured our own diseases, and had gained sufficient confidence in our ideas to bring them before the public. Indeed, we felt an obligation to do so. We know how many people suffer from “incurable” chronic diseases and premature aging. We believe that, with proper diet and appropriate antibiotics, nearly all diseases can be cured, and nearly everyone can become a healthy centenarian.

It will please us greatly if others find our book useful.  Thank you, Chris, for letting your readers know about it!

Saturday Night Fever

This cute couple looks like they’ve put in a lot of practice on the dance floor!