Category Archives: Neuropathy

Farewell Mathias

Longtime readers will remember Mathias and Zachary, the unfortunate children suffering from Neurodegeneration with Brain Iron Accumulation, a genetic disorder that leads to horrifically painful spasms beginning in early childhood, and death as a teenager. I wrote about their case in Ketogenic Diet for NBIA (Neurodegeneration with Brain Iron Accumulation), February 22, 2011.

The ketogenic version of PHD had remarkable effects for the NBIA kids. Mathias and another boy who tried the diet, Zachary, regained control their limbs, and the spasms and pain went away. Kindy, Mathias’s mom, wrote in 2011:

Both boys have begun smiling and laughing all the time.

Nothing inspires happiness more surely than the cessation of extreme pain!

My speculation is that a ketogenic (or high-fat) diet helps in NBIA by allowing Coenzyme A, the crucial enzyme which is under-generated in NBIA, to be redistributed from organs like the liver and muscle, where it is manufactured in abundance, to the brain where it is most needed. On a ketogenic or high-fat diet, more CoA is created and it is more often bound in water-soluble forms (such as acetyl-CoA, acetoacetyl-CoA, and HMG-CoA) that can cross cell membranes and enter the brain.

Mathias and Zachary continued to do well on our diet for over three years. Kindy recently wrote:

Zach is actually doing really well.  He is following your diet still (not into the ketogenic range but otherwise following it more or less precisely) …  He is off nearly all of his medicines and is able to do things that he never could in his life.   He is not well – but he is not in pain and has no spasms, and is doing school work etc.

An aside: I’ve been hearing recently from a number of people who experienced great benefits in neurological conditions – NBIA, epilepsy, migraines, and others – following the ketogenic version of our diet, and later transitioned to the regular version of PHD with more carbs and less fat, and continued to maintain all the neurological benefits they had first achieved on the ketogenic diet. Perhaps it was not the ketosis that was crucial, but some other aspect of PHD, such as reduction of inflammation or improved nutrition.

Mathias also was doing very well, until he developed pneumonia last summer. Possibly his genetic mutations disturbed immune function; in any case, the pneumonia led to fatal complications. Kindy wrote:

I want to let you know that on June 23, Mathias died of septic shock.  He went into the hospital 10 days prior with pneumonia and we were packing to go home on the following Friday when he got a sudden fever.  The doctors asked us to stay one more day – his lung x-rays were clear but they were concerned about the fever.

On Saturday, his fever went to 41 degrees Centigrade.  On Sunday, it went to 42 degrees.  Despite every available antibiotic and all other attempts to save him, Mathias died peacefully with a strong heart (153 beats per minute – and breathing on his own).

He was surrounded (even in Intensive Care) by his whole family, plus his aunt, and two of his long time helpers – plus two of his nurses and two doctors.  We thought it would be a few more days and we were all hugging him, and laughing with him and telling him stories.  From one second to the next, his heart stopped.

We choose to believe that Mathias decided – down to the last second – what and how he was going to leave his earthly body.  He had no cramps, no spasms, no pain. He just let go surrounded by love.

We are privileged and honored to have known such a brave, smiling, incredible person.  He did more and affected more people in his 9 years of life than most people do in their entire lives. He was always happy, always smiling – a gift to everyone around him.

Thank you for being part of the forces around his life who helped support him, love him, and provide him with the best life that was possible for him. Thank you from the bottom of our hearts!

Mathias RIP

Farewell Mathias. May you rejoice in God’s kingdom, where all love and all are lovable, and all tears are wiped away. Requiescat in pace.

Autoimmune Panel: Wahls, Ballantyne, Jaminet, & Gray

This is probably the most important and interesting podcast I’ve had the privilege of being part of: an expert panel on Recovering from Autoimmune and Neurodegenerative Diseases.

The panel was arranged by Whitney Ross Gray of Nutrisclerosis, who has recovered from Multiple Sclerosis with an ancestral diet rich in animal foods.

The expert panelists were:

  • Terry Wahls, M.D., who has famously recovered from Multiple Sclerosis on an ancestral diet rich in plant foods, and is now leading a clinical trial studying ancestral diets as treatments for M.S.
  • Sarah Ballantyne, Ph.D., who blogs at The Paleo Mom. Sarah suffered from an autoimmune disease, lichen planus, as well as other ailments, and healed them (and lost 120 pounds) with an ancestral diet.
  • Paul Jaminet, Ph.D. I had a chronic disease with neurological symptoms that overlapped with M.S., but it turned out to be an infectious disease and cleared with antibiotics. However, this could not be diagnosed until after I’d made considerable progress addressing it through an ancestral diet, which became the Perfect Health Diet.

Questions were solicited beforehand from patients suffering from autoimmune and neurodegenerative diseases, and in an hour and forty minutes we covered many fascinating topics.

I think the combination of personal experience recovering from chronic diseases, and scientific and medical expertise, made for an exceptionally useful conversation. If you are interested in these diseases – or just in how to be healthy, since the methods that address these conditions are generally beneficial for anyone’s health – take a listen.

My thanks to Whitney for organizing the discussion, Carl for hosting it, and Terry and Sarah for making a great panel.

Ketogenic Diet for NBIA (Neurodegeneration with Brain Iron Accumulation)

It’s always a pleasure to hear from readers who report improved health.

Some of these emails are poignant: distressing because of the pain of their diseases, yet heartening because of the improvements a good diet brings.

It can’t get more poignant than to hear that children with a painful, deadly, and untreatable disease have, thanks to diet, begun smiling, laughing, and getting better.

Last week Kindy Flyvholm, who bought our pre-publication e-book, wrote with just such a report. I’m delighted to be able to pass it on, and hopeful that this report will help other children escape unnecessary suffering and enjoy life more abundantly. Thank you, Kindy, for sharing your story!

Ketogenic diets as therapy for neurological dysfunction

In our book and on this blog, we advise everyone with a neurological or brain disorder to try a ketogenic (“ketone generating”) diet. The book spells out how to tweak the Perfect Health Diet to make it ketogenic: basically, reduce carbs and add copious amounts of coconut oil.

Ketogenic diets can be surprisingly helpful with brain and nerve dysfunctions. The reason is that neurons have very limited metabolic options: they can burn only glucose or ketones. Glucose metabolism is complex and prone to failure; ketone metabolism is simple and robust. Especially in disease states, a neuron on glucose can be a totally different creature from a neuron on ketones. Neurological diseases that are disastrous on a glucose-rich diet can become mild when neurons are fed ketones.

It doesn’t work for every brain disease, in part because ketones don’t diffuse through the brain all that well. Ketones reach the subcortical and inner cortical layers of the brain easily, but don’t readily reach superficial layers. [1] However, in some diseases the places reached by ketones are the ones in trouble. The evolutionarily oldest parts of the brain, such as the brain stem, are the most likely to benefit from a ketogenic diet. Thus, neurodegenerative diseases that cripple the body may be top candidates for a therapeutic ketogenic diet.

NBIA (Neurodegeneration with Brain Iron Accumulation)

One such disease is NBIA, short for Neurodegeneration with Brain Iron Accumulation. NBIA is most commonly caused by a mutation in the gene PANK2, which codes for the mitochondrial enzyme that converts vitamin B5 (pantothenic acid) into CoenzymeA (a crucial metabolic substrate). This version of NBIA is called PKAN, for pantothenate kinase-associated neurodegeneration.

NBIA/PKAN is characterized by an accumulation of iron in the basal ganglia of the brain. The iron is readily visible in brain MRIs, producing an “eye of the tiger” brightness pattern. [2] It produces symptoms that overlap with those of Parkinson’s disease. [3] About 1 in 500 people carries a PANK2 mutation, so some form of the disease strikes 1 in 250,000 people.

The disease typically first presents itself about age 3, when leg dystonia and spasticity causes an impaired gait, sometimes including toe-walking. The disease progresses and children lose the ability to walk. Dystonia extends to the hands and the face; the head cannot be held upright, and swallowing becomes difficult. Blindness from retinopathy and hearing loss often develop. Premature death occurs usually in the teens, often by age 10 or younger. The last years are excruciatingly painful.

Here is a picture of Zach, age 12:

You can see his inability to hold his head upright, and the hand position characteristic of dystonia. Zach cannot swallow naturally and has to be tube-fed.

The bumps in his chest are from the battery packs used to drive a deep brain stimulation device. The idea is to introduce signals that counter the excruciatingly painful dystonic spasms. Like other therapies for NBIA, deep brain stimulation is often ineffective. In Zach’s case, the device worked for less than one month. It is now turned off but is not removed because the operation would be too traumatic.

Ketogenic Diet Therapy

Kindy writes:

It was in desperation that we began researching options (ANY OPTION) to prevent the horrible pain that precedes death especially in the case of children with early-onset NBIA.

Many research paths led to the ketogenic diet being an option.  A lot of discouraging information was presented as well (like how impossible it is to follow or how disruptive it is to family life, etc).

It’s remarkable, but doctors are so divorced from dietary science that they do not know how simple and natural a ketogenic diet can be, and assume that only absurdly onerous formulations are needed. As we point out in the book, a large fraction of mammals eat ketogenic diets as their natural diet; and all mammals including humans subsist on ketones during starvation.

Doctors were pessimistic about its chances, but a ketogenic diet produced amazing results:

My son, who is 6, … has been on the diet for less than one month and his hands have relaxed enough for him to regain his pointing ability (which had been lost).

Zach, the 12 year old on the diet, is much further progressed in the disease.  Zach has been on the diet since late October, 2010, reaching 80% fat levels towards mid-December.  The following are the improvements that have been noted by Zach’s family and therapists:  Zach has begun holding up his head even though his neck has been hyper extended backwards since he was 9, he has begun pointing with his finger again instead of the palm of his hand, he is moving his right arm again some, and the latest thing is that he is now able to go from a laying position to a sitting position on his own by hanging on to something or someone.  He has not done this since he was 9 years old.

Both boys have begun smiling and laughing all the time.

I know just how they feel!

The previous picture was Zach before starting the ketogenic diet. Here he is on the diet:

Kindy continues:

Zach has gotten off all pain medicine and only has a small amount of 3 [anti-spasmodic] medicines left which hopefully he can get off of over the next year.

Going in and out of ketosis has immediate effects, as this anecdote shows:

Zach had a recent day where his muscle spasms returned severely.   Bad enough he needed to go to the hospital for morphine.  At the last minute (before going to the hospital), the parent looked at her recipe for that day and realized she had used a lot of white chicken meat.  She added in some more coconut oil into his next few tube feedings and the spasms went away immediately.  This is extremely powerful.

Kindy concludes:

We are not under any delusions.  Our children may be taken from us at any time.  If they are taken pain free, then we are blessed compared to the alternative.  The situation thus far with our ‘experiment’ has proven much more than we could have hoped.


Kindy, it’s wonderful that your research and perseverance has bought hope to your son, and that you’re spreading the word to help others find the same hope. I’m so grateful that you’ve shared your story with us. Hopefully your experiences will reach the NBIA community, save children from unnecessary pain, and maybe extend their lives significantly!

We salute every parent who has to deal with neurological and genetic diseases in their children. As this disease illustrates, anyone with a neurological disorder should experiment with a ketogenic diet. Ketogenic diets have been tested in very few diseases, and there is no telling how many neurological diseases may prove amenable to this therapy. But there is already considerable evidence that neurological diseases of the elderly, such as Alzheimer’s and Parkinson’s, are treatable with a ketogenic diet.

Last Thursday, I defended the idea of a healthy diet as the best therapy for disease (“Therapy AND Life”). The NBIA kids illustrate just how powerful dietary therapies can be.

Medical doctors seem to have great misapprehensions and fear of experimenting with this diet. They do not understand it, don’t know how it should be implemented, and have never tried it themselves. Many of the medical ketogenic diets are malnourishing and generate terrible side effects. Not surprisingly, many patients quit the diets.

This coming Thursday, I’ll discuss how to implement a safe, healthy, and pleasurable-to-eat ketogenic diet. There’s no reason for an unpalatable or malnourishing diet to stop patients from enjoying the benefits that Zach has seen!


[1] Hawkins RA, Biebuyck JF. Ketone bodies are selectively used by individual brain regions. Science. 1979 Jul 20;205(4403):325-7.

[2] Gregory AM, Hayflick SJ. Neurodegeneration with brain Iron Accumulation. Orphanet Encyclopedia, September 2004.

[3] Klein C et al. Hereditary parkinsonism: Parkinson disease look-alikes–an algorithm for clinicians to “PARK” genes and beyond. Mov Disord. 2009 Oct 30;24(14):2042-58. Paisán-Ruiz C et al. Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord. 2010 Sep 15;25(12):1791-800.

Why Wheat Is A Concealed Cause of Many Diseases, III: Adjuvant Activity

We’ve been looking into how wheat can cause autoimmune diseases other than the “classic” wheat-associated diseases, celiac disease and Hashimoto’s thyroiditis.

The first post in the series discussed how wheat can cause a leaky, permeable gut that lets toxins and bacteria into the body. The second post discussed how wheat can itself generate a variety of auto-antibodies that attack nerves, brain, connective tissue and joints.

Now, we want to look at how wheat can create diseases by binding to other molecules and causing the body to form antibodies to them. Wheat can thereby cause allergies against foods as well as autoimmune attacks on self molecules.

Adjuvant Activity of Wheat Germ Agglutinin

Immunologically speaking, an “adjuvant” is a molecule that when bound to another molecule makes it much more immunogenic. Adjuvants such as aluminum salts are used in vaccines to make the immune system produce antibodies more readily against the target protein. This lowers the vaccine dose needed for immunity.

Wheat germ agglutinin (WGA) is a wheat lectin. (It is not part of gluten.) WGA can act as an adjuvant, causing the body to generate antibodies against proteins that, in isolation, the body would not form antibodies against. 

For instance, antibodies against the egg protein ovalbumin are not generated if it enters the body alone, but are generated if it is accompanied by WGA. [1]

So don’t eat toast with your eggs! If you have a leaky gut, the wheat might give you an egg allergy.

Haptenization Activity of Wheat Gliadin

A similar process that helps create auto-antibodies is “haptenization.” The immune system forms antibodies more readily against large molecules than small ones. (This helps avoid autoimmunity, since small molecules are more likely to have similar human peers.)

When two small molecules bind together, so they look like one big one, the immune system is more likely to form antibodies against the large complex. These antibodies may then react against one of the molecules individually, even if it is not paired up. If the targeted molecule is human, then the antibody is an auto-antibody.

One reason wheat gliadin is so disruptive to the body is that it binds strongly to sugars. The average molecule of wheat gliadin is bound to 1 to 2 molecules of glucose and 2 molecules of sialic acid, another sugar. [2] Since a lot of human molecules have sialic acid residues, gliadin can bind to them.

One of the sialic acid-containing molecules gliadin binds to is called GM1 ganglioside. This molecule is found on the intestinal brush border, but it is also found in nerves. When wheat binds to GM1 ganglioside on the intestinal surface, it induces the formation of auto-antibodies that attack the ganglioside in nerves. In 65% of patients with gluten sensitivity and peripheral nerve damage, anti-ganglioside antibodies are found. [2]


Wheat could be a concealed cause of many food allergies, through WGA’s adjuvant activity. If so, then many food allergies may gradually disappear after wheat is given up.

Wheat proteins can also bind to an extraordinarily large number of human proteins, in part by binding to sialic acid or other carbohydrate residues of glycoproteins or glycolipids, and has a chance to induce antibody formation against many of those proteins.

The bewildering array of ways in which wheat can trigger attacks on human tissue makes it impossible to identify all the wheat-caused diseases.  The only thing we can say for sure is that if you have a disease, it’s a good idea to give up wheat. You may give up your illness at the same time.

Related Posts

Other posts in this series:

  1. Wheat Is A Cause of Many Diseases, I: Leaky Gut Oct 26, 2010.
  2. Why Wheat Is A Concealed Cause of Many Diseases, II: Auto-Antibody Generation Oct 28, 2010.


[1] Lavelle EC et al. The identification of plant lectins with mucosal adjuvant activity. Immunology. 2001 Jan;102(1):77-86.

[2] Alaedini A, Latov N. Transglutaminase-independent binding of gliadin to intestinal brush border membrane and GM1 ganglioside. J Neuroimmunol. 2006 Aug;177(1-2):167-72.