Category Archives: Nutrients - Page 12

Thyroid: More Evidence That “Normal” is Unhealthy

Two inexpensive blood tests should be done routinely, but often aren’t: Vitamin D levels (by serum 25-hydroxyvitamin D) and thyroid stimulating hormone levels (TSH). There are few easier ways to substantially improve health than to normalize levels of these hormones.

One difficulty, however, is disagreement over what “normal” levels are. The standard “normal” range for TSH on lab tests is about 0.5 to 4.6 mIU/L. This range originally encompassed two standard deviations about the US mean, meaning that 95% of the population fell in the “normal” range. Unfortunately, evidence that TSH values in this range were healthy has always been lacking.  In fact, many people with “normal” TSH live with symptoms of hypothyroidism.

As awareness has grown of the biological significance of thyroid hormone, researchers have looked more closely into the correlation of TSH levels with health.  This research is revealing is that many people are thyroid-deficient and that improving thyroid status can dramatically improve health.

The best research has been conducted in Europe:

  • The HUNT study of 25,000 healthy Norwegians found that their prospects were substantially affected by thyroid function. Those with a TSH level of 1.5 to 2.4 were 41% more likely to die over the next 8 years than those with TSH below 1.5; those with TSH 2.5-3.4 were 69% more likely to die. [1]
  • An Italian study showed that pregnant women with TSH between 2.5 and 5.0 had a miscarriage rate 70% higher than women with TSH below 2.5. [2]

Now, a Dutch study shows that the likelihood of breech birth rises monotonically with the mother’s TSH levels at gestational week 36. [3] Breech birth is a significant hazard:  it commonly requires a Caesarean section delivery, and both mother and infant are more likely to die or otherwise suffer damaged health if the baby presents in the breech position. The Dutch study found that:

  • Pregnant women with a TSH of 0.5 or less had NO breech births at all, and those between 0.51 and 0.71 had only a 1% chance of a breech birth.
  • Pregnant women with a TSH between 0.71 and 2.49 had about a 5% chance of breech birth.
  • Pregnant women with TSH of 2.50 to 2.89 had an 11% chance of breech birth, while those with TSH above 2.89 had a 14% chance of breech birth.

The authors didn’t provide a detailed breakdown of breech rates for TSH levels in the middle range, but it is a safe bet that TSH levels of 1.5 to 2.49 were much more dangerous than TSH levels of 0.72 to 1.0.

What these studies are telling us is that:

  1. People with the healthiest thyroid status have very low TSH. A TSH level below 0.5 can indicate either hyperthyroidism (too much thyroid hormone) or perfect health. Any TSH above 0.5 is suggestive of, at a minimum, a slight deficiency of either iodine or selenium.
  2. You can have impaired thyroid status with normal free T4 hormone levels. This study and others have found that TSH levels, not free thyroid hormone levels, are the best indicator of health.
  3. Health becomes significantly impaired above TSH levels of about 1.5. Any TSH above 1.5 should be addressed, if only through iodine and selenium supplementation (or abundant seaweed consumption with ~3 Brazil nuts per day.) Since a TSH of 1.5 is about the population mean, it’s a fair inference that most Americans are needlessly suffering impaired health due to impaired thyroid status.
  4. Especially during pregnancy, thyroid and iodine status are critical. Breech birth and miscarriage are far from the only negative consequences of impaired thyroid status. An elevated TSH usually indicates an iodine deficiency, and “even a mild iodine deficiency during pregnancy and during the first years of life adversely affects brain development.” [4] Iodine deficiency is the most common worldwide cause of mental retardation (cretinism), and elevated TSH during pregnancy can be expected to reduce the IQ of the child by up to 10 points and to produce other neurological deficits, including “visuomotor, memory, attention and posture” deficits. [5]

So, if your doctor doesn’t do it routinely, ask for TSH and vitamin D measurements at your next physical. There are few easier ways to improve your health than fixing thyroid and vitamin D status.

[1] Asvold BO et al. Thyrotropin levels and risk of fatal coronary heart disease: the HUNT study. Arch Intern Med. 2008 Apr 28;168(8):855-60. http://pmid.us/18443261.

[2] Negro R et al. Increased Pregnancy Loss Rate in Thyroid Antibody Negative Women with TSH Levels between 2.5 and 5.0 in the First Trimester of Pregnancy. J Clin Endocrinol Metab. 2010 Jun 9. [Epub ahead of print] http://pmid.us/20534758.

[3] Kuppens SM et al. Maternal thyroid function during gestation is related to breech presentation at term. Clin Endocrinol (Oxf). 2010 Jun;72(6):820-4. http://pmid.us/19832853.

[4] Remer T et al. Iodine deficiency in infancy – a risk for cognitive development. Dtsch Med Wochenschr. 2010 Aug;135(31/32):1551-1556. http://pmid.us/20665419.

[5] Joseph R. Neuro-developmental deficits in early-treated congenital hypothyroidism. Ann Acad Med Singapore. 2008 Dec;37(12 Suppl):42-3. http://pmid.us/19904446.

Bowel Disease, Part III: Healing Through Nutrition

[UPDATED August 2015 with updates in italic . – Paul]

Bowel diseases are characterized by chronic infection of the gut lining (and sometimes immune cells), wounded and inflamed gut tissue, and autoimmune attacks on the gut.

Malnutrition contributes to bowel disease by impairing immunity, impairing gut motility, and slowing intestinal healing.

Conversely, bowel diseases impair nutrient absorption along with the rest of digestion, exacerbating malnutrition.  To avoid a vicious spiral, bowel disease patients should be especially attentive to their nutritional needs.

The first step toward good nutrition is to eat the Perfect Health Diet, including all of our supplemental foods. For gut health, egg yolks are especially important. Also important are extracellular matrix components from bones and joints; vegetables, herbs, and spices; and healthy fats (which trigger bile production, bile being beneficial for the gut). See our Recommended Supplements page for more on the supplemental foods.

We no longer recommend taking a multivitamin. For various reasons multivitamin formulas are incomplete:

  • Some nutrients, such as magnesium and vitamin C, are too bulky to fit in a single pill.
  • Some, such as vitamin D and iodine, have no “one size fits all” dose that manufacturers can safely include.  They therefore include a low dose that is safe for all, meaning that most receive an insufficiency.
  • Others, like melatonin, may be unnecessary for the general population but are likely to benefit bowel disease patients.

Here, then, are a few supplements that bowel disease patients may find to be helpful additions to their multivitamin.

Vitamin D3 and Partners

Vitamin D has been called the “antibiotic vitamin” [1] because it triggers the body’s production of natural antibiotic compounds.

Vitamin D is needed for the production of the antimicrobial peptides cathelicidin and beta-defensin 2, which are produced mainly in immune cells and in epithelial cells lining the gut. [2, 3] These antimicrobial peptides normally saturate the mucosal barrier, where they kill most bacteria, enveloped viruses, fungi, and protozoa.

Evidence has accumulated that deficiencies in antimicrobial peptides are causal factors in bowel diseases:

  • In Crohn’s disease, a deficiency of antimicrobial peptides allows pathogens to invade. [4, 5, 6]
  • Reduced expression of intestinal defensins predicts diarrhea two months in advance. [7]
  • When antimicrobial peptides are induced therapeutically, intestinal infections are relieved. [8]
  • Mice with no vitamin D function due to knockout of the vitamin D receptor experience bacterial overgrowth of the intestine, and even mild injury to the colon results in the death of the mouse. [9]

There is increasing awareness that vitamin D is needed for defense against infections generally. [10]

Vitamin D has other benefits besides strengthening immunity. It also suppresses autoimmunity.  For instance, there is evidence for an inverse relationship between vitamin D levels and auto-antibody levels [11]. Some autoimmune patients have experienced a disappearance of auto-antibodies upon supplementation with vitamin D. [12]

Since bowel diseases are the result of infections and autoimmunity, normalization of vitamin D levels is probably extremely helpful.

Vitamin D is also associated with reduced risk of colorectal cancer. [13] Bowel disease patients are at elevated risk for colorectal cancer.

Sunshine should be sought regularly, and supplements added to bring serum 25-hydroxyvitamin D levels to at least 40 ng/ml. In addition, vitamin D should be accompanied by supplementation of two key partners:

  • Vitamin K2 is needed for proper vitamin D function.  Most inflammatory bowel disease patients are severely deficient in vitamin K2. [14] A good daily supplement should include 100 mcg of the MK-7 form, perhaps combined with some synthetic MK-4 and plant-derived vitamin K1.
  • Magnesium is needed for proper vitamin D function and many people are deficient.  200 mg/day magnesium citrate (which is better absorbed than magnesium oxide) is appropriate.

Melatonin

Melatonin is a crucial hormone which is evolutionarily conserved across all nearly all animals, indicating that it is essential to health. Most know that it is produced in the pineal gland of the brain during sleep, but it is less well known that it is abundantly produced by the gut. Much of the body’s melatonin gathers in the gut, where melatonin concentrations are 100-fold greater than in blood and 400-fold greater than in the pineal gland. [15]

In the gut melatonin reduces inflammation, stimulates immune function, fosters tissue repair and helps regenerate the epithelium. [15] Melatonin also has antimicrobial effects. [16]

Clinical trials have found that melatonin can be beneficial in treating bowel conditions. [17, 18, 19] Melatonin seems to be especially effective at reducing abdominal pain. [20, 21]

To maximize night-time melatonin levels, it is best to sleep in a totally darkened room; avoid eating food at night; and avoid exercising at night. Melatonin can also be supplemented.  Supplemental melatonin should be taken immediately before bed. Time-release tablets are best, otherwise fluctuating melatonin levels may cause waking in the middle of the night. If early waking does occur, reduce the dose.

Thyroid and Immune Minerals:  Selenium and Iodine

Selenium and iodine are critical for thyroid and immune function. Adequate thyroid hormone and a well-functioning immune system, in turn, are essential for gut health.

The thyroid hormone T4 is 65% iodine by weight, and the active thyroid hormone T3 is 59% iodine by weight.  Selenium-containing deiodinase enzymes are required to convert inactive thyroid hormone to its active form. Either iodine or selenium deficiency can cause hypothyroidism, or a deficiency of thyroid hormone.

Gut problems, especially constipation, are among the primary symptoms of hypothyroidism. Thyroid hormone is important for proper wound healing – and therefore for recovery from bowel disease.

Selenium and iodine are also essential for immune function.  Iodine along with the enzyme myeloperoxidase is needed to produce respiratory bursts – the burst of reactive oxygen species (ROS) that white blood cells use to kill pathogens.  Selenium is necessary both to strip iodine from thyroid hormone in the white blood cells, and to maintain (via the enzyme glutathione peroxidase) the function of the antioxidant glutathione which protects both white blood cells and gut cells from ROS.  Deficiency of either selenium or iodine leads to an immediate reduction in the killing activity of white blood cells.

Iodine was widely prescribed for infectious diseases in the 19th century. The Nobel laureate Dr. Albert Szent Györgyi, the discoverer of vitamin C, recounted this anecdote:

When I was a medical student, iodine in the form of KI was the universal medicine. Nobody knew what it did, but it did something and did something good. We students used to sum up the situation in this little rhyme:

If ye don’t know where, what, and why

Prescribe ye then K and I. [22]

Doses as large as 1 gram potassium iodide, containing 770 mg of iodine, were given. In practice, however, it’s highly desirable to start with a low dose of iodine, around 1 mg/day, and allow the thyroid to adapt before gradually increasing the dose.

The great danger of high doses of iodine is that it will make autoimmune attacks, as well as attacks on pathogens, more powerful. Therefore large supplemental doses of iodine should be taken only after grains and legumes have been eliminated from the diet for at least 3 months. Bowel disease patients should also be tested for the presence of thyroid auto-antibodies before beginning high-dose iodine.

Related minerals: 

  • Myeloperoxidase requires iron (heme), and unfortunately anemia due to iron deficiency is common in bowel disease patients, especially among menstruating women. [23] A good way to judge the need for iron is to measure blood ferritin levels, which should be 50 ng/ml or higher.

Thyroid hormone

If auto-antibodies are present, then hypothyroidism cannot be repaired by iodine supplementation. Yet thyroid hormone is necessary for gut healing.  In such cases, prescription thyroid hormone should be taken.

Hypothyroidism is widely undiagnosed, because the “normal” range of thyroid stimulating hormone (TSH) is far too wide. TSH levels over 1.5 mIU/L may indicate a subclinical hypothyroidism that is sufficient to measurably raise mortality. [24] Anyone with a TSH over 1.5 mIU/L and a basal body temperature below 98 F should consider obtaining prescription thyroid hormone to test whether it helps relieves hypothyroidism-associated symptoms such as constipation and improves general health. Generally, a good dose of thyroid hormone will eliminate symptoms of hypothyroidism and reduce TSH to 2.0 or so – still elevated, to stimulate thyroid healing.

Antioxidants and Bile Supports: Vitamin C, Glutathione, N-Acetylcysteine, Taurine, Glycine

Since the main immune defense (and autoimmune) mechanisms in the gut involve around ROS-producing respiratory bursts, the gut of any bowel disease patient is a ROS-rich environment.

It is therefore desirable to maximize the ability of both gut and immune cells to protect themselves against ROS with native antioxidants.

Foremost among the native antioxidants is glutathione, the primary immune and gut antioxidant. Glutathione may be supplemented directly, or its levels may be raised by supplementing with vitamin C and N-acetylcysteine.

Vitamin C has other important functions:  it is needed for wound healing and to maintain the collagen-based extracellular matrix which backs the gut and gives it integrity. One of the symptoms of scurvy (extreme vitamin C deficiency) is bleeding from the mucus membranes, including the gut lining.

A Japanese study found that vitamin C was highly protective against ulcerative colitis, reducing incidence by 55%. [25]

In rats, glutathione deficiency leads to elevated infection-induced bowel inflammation. [26] Glycine (the most abundant amino acid in extracellular matrix) and taurine both support glutathione synthesis.

Related minerals: 

  • Zinc and copper are both required for the function of another antioxidant, zinc-copper superoxide dismutase.  We recommend supplementing dietary intake with another 15 mg zinc and 2 mg copper. This can be achieved by taking a daily multivitamin plus eating occasional beef or lamb liver.
  • Magnesium is needed for glutathione synthesis. As noted before, 200 mg/day magnesium citrate is a highly desirable supplement for bowel disease patients.

Magnesium and copper deficiencies contribute to necrotizing enterocolitis [27], and probably worsen all bowel diseases.

Bile is an important aid to gut health, in part because it helps to clear the small intestine of bacteria. Bile needs vitamin C for its manufacture and needs to be conjugated with glycine or taurine. Glycine can be obtained from food as extracellular matrix material, or as a powder which you can sprinkle on food. Taurine is an excellent supplement for patients with gut disorders.

Summary

Although not a complete list of the vitamins and minerals which may be helpful to bowel disease patients, these are among the most important – and most often overlooked:

  • Vitamin D3 sufficient to raise serum 25-hydroxyvitamin D above 40 ng/ml.
  • Vitamin K2, at least 100 mcg/day.
  • Magnesium citrate or bis-glycinate, 200 mg/day.
  • Melatonin, if needed for deep restful sleep.
  • Selenium, 200 mcg/week.
  • Iodine, 225 mcg/day.
  • Thyroid hormone sufficient to bring TSH below 2.0.
  • Vitamin C, 1 g/day.
  • Glutathione, 500 mg/day, preferably in the reduced form, taken between meals on an empty stomach with a full glass of water (since it is destroyed by stomach acid).
  • N-acetylcysteine, 500 mg/day.
  • Iron, zinc, and copper sufficient to relieve deficiencies.
  • Taurine, 1 g/day.
  • Glycine (if insufficient extracellular matrix is eaten), up to 5 g/day.

Related Posts

Other posts in this series:

  1. Bowel Disorders, Part I: About Gut Disease July 14, 2010
  2. Bowel Disease, Part II: Healing the Gut By Eliminating Food Toxins m July 19, 2010
  3. Bowel Disease, Part IV: Restoring Healthful Gut Flora July 27, 2010

References

[1] “The antibiotic vitamin: deficiency in vitamin D may predispose people to infection,” Science News, Nov 11, 2006, http://findarticles.com/p/articles/mi_m1200/is_20_170/ai_n16865477/.

[2] Liu PT et al. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007 Aug 15;179(4):2060-3. http://pmid.us/17675463.

[3] Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol. 2002 Feb;14(1):96-102. http://pmid.us/11790538.

[4] Rivas-Santiago B et al. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect Immun. 2009 Nov;77(11):4690-5. http://pmid.us/19703980.

[5] Wehkamp J et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2003 Jul;9(4):215-23. http://pmid.us/12902844.

[6] Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol. 2008 Nov;1 Suppl 1:S67-74. http://pmid.us/19079235

[7] Kelly P et al. Reduced gene expression of intestinal alpha-defensins predicts diarrhea in a cohort of African adults. J Infect Dis. 2006 May 15;193(10):1464-70. http://pmid.us/16619196.

[8] Wehkamp J et al. Defensins and cathelicidins in gastrointestinal infections. Curr Opin Gastroenterol. 2007 Jan;23(1):32-8. http://pmid.us/17133082.

[9] Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. 2007 Mar 30;8:5. http://pmid.us/17397543.

[10] Yamshchikov AV et al. Vitamin D for treatment and prevention of infectious diseases: a systematic review of randomized controlled trials. Endocr Pract. 2009 Jul-Aug;15(5):438-49. http://pmid.us/19491064.

[11] Goswami R et al. Prevalence of vitamin D deficiency and its relationship with thyroid autoimmunity in Asian Indians: a community-based survey. Br J Nutr. 2009 Aug;102(3):382-6. http://pmid.us/19203420.

[12] Dr. John Cannell, The Vitamin D Newsletter, March 9, 2009.

[13] Woolcott CG et al. Plasma 25-hydroxyvitamin D levels and the risk of colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2010 Jan;19(1):130-4. http://pmid.us/20056631.

[14] Kuwabara A et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporos Int. 2009 Jun;20(6):935-42. http://pmid.us/18825300.

[15] Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci. 2002 Oct;47(10):2336-48. http://pmid.us/12395907.

[16] Tekbas OF et al. Melatonin as an antibiotic: new insights into the actions of this ubiquitous molecule. J Pineal Res. 2008 Mar;44(2):222-6. http://pmid.us/18289175.

[17] Sánchez-Barceló EJ et al. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem. 2010;17(19):2070-95. http://pmid.us/20423309.

[18] Terry PD et al. Melatonin and ulcerative colitis: evidence, biological mechanisms, and future research. Inflamm Bowel Dis. 2009 Jan;15(1):134-40. http://pmid.us/18626968.

[19] Chang FY, Lu CL.Treatment of irritable bowel syndrome using complementary and alternative medicine. J Chin Med Assoc. 2009 Jun;72(6):294-300. http://pmid.us/19541564.

[20] Lu WZ et al. Melatonin improves bowel symptoms in female patients with irritable bowel syndrome: a double-blind placebo-controlled study. Aliment Pharmacol Ther. 2005 Nov 15;22(10):927-34. http://pmid.us/16268966.

[21] Song GH et al. Melatonin improves abdominal pain in irritable bowel syndrome patients who have sleep disturbances: a randomised, double blind, placebo controlled study.  Gut. 2005 Oct;54(10):1402-7. http://pmid.us/15914575.

[22] Szent-Györgyi, A. (1957) Bioenergetics. New York: Academic Press, p. 112.

[23] Gomollón F, Gisbert JP. Anemia and inflammatory bowel diseases. World J Gastroenterol. 2009 Oct 7;15(37):4659-65. http://pmid.us/19787829.

[24] Asvold BO et al. Thyrotropin levels and risk of fatal coronary heart disease: the HUNT study. Arch Intern Med. 2008 Apr 28;168(8):855-60. http://pmid.us/18443261.

[25] Sakamoto N et al. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis. 2005 Feb;11(2):154-63. http://pmid.us/15677909.

[26] van Ampting MT et al. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats. BMC Physiol. 2009 Apr 17;9:6. http://pmid.us/19374741.

[27] Caddell JL. A review of evidence for a role of magnesium and possibly copper deficiency in necrotizing enterocolitis. Magnes Res.1996 Mar;9(1):55-66. http://pmid.us/8819095.

The Danger of Protein During Pregnancy

At PerfectHealthDiet.com we’re advocates of protein restriction. We recommend:

  • Avoiding all protein-containing plants, as plant proteins tend to be toxic;
  • Striving to eat fatty, not lean, meats and fish, in order to keep protein intake down and fat intake up.

Protein restriction helps protect against viral and bacterial infections by promoting autophagy, the process of intracellular protein scavenging, digestion, and recycling.  During autophagy, bacteria and viruses, as well as junk human proteins and damaged organelles, are digested.  Autophagy has been strongly linked to longevity [1] and is protective against many diseases.

Our advocacy of low protein intake separates us from many other Paleo bloggers.  Loren Cordain, the dean of the Paleo movement, has long advocated consumption of lean meats.  Although he has moderated his stance somewhat, the front page of his site still places lean meats first among his favored foods:

Learn how a diet based on lean meats

The Paleo Diet is a way of eating in the modern age that best mimics diets of our hunter-gatherer ancestors – combinations of lean meats

(The other major difference we have with Dr. Cordain is his exclusion of starchy foods from a “Paleo” diet, even though starchy tubers have been part of the ancestral human diet for 4 million years. But that is a story for another day.)

Those who have read the pre-publication draft of our book know that we place high store on human breast milk as an indicator of the optimal composition of the human diet.  Human breast milk provides only 7% of calories in the form of protein. (Carbs are about 38% and fats about 55%.) One can debate whether 7% is the right level of protein for adults; but, if the principle of natural selection is sound, it must be that infants need a low-protein diet.

Science bears this out.  As our book notes, diets containing 20% of calories as protein are highly toxic to infants. Pre-term infants fed 20% protein diets had more fever, lethargy, and poor feeding than infants fed 10% protein diets, and lower IQs at ages 3 and 6 years. [2] Even a slight increase in the protein content of formula, from 7% to 9%, significantly increased the likelihood that babies would be overweight by age 2. [3]

Given our skepticism toward high-protein diets, especially for babies, we were pleased to see Dr. Cordain in his most recent newsletter [The Paleo Diet Update v6, #20 – Protein Intake for Pregnant Women] acknowledge the dangers of high protein intake by pregnant mothers. Dr. Cordain advises a pregnant mother:

[Y]ou probably should increase your fat and carbohydrate consumption, and limit protein to about 20-25% of energy, as higher protein intakes than this may prove to be deleterious to mother and fetus for a variety of physiological reasons….

“Protein intakes above this [25% of total calories] threshold may affect pregnancy outcome through decreased mass at birth and increased perinatal morbidity and mortality.” [4]

The physiological basis for this aversion stems from a reduced rate of urea synthesis during pregnancy that is evident in early gestation [5] as well as increases in the stress hormone cortisol [6]. Hence, pregnant women should include more carbohydrate and fat (i.e. fattier meats) in their diets and limit dietary protein to no more than 20-25% of their total caloric intake.

What are the long-term effects of a high-protein diet during pregnancy on the offspring?  In long-term follow-up studies of the adult children of mothers who ate high protein diets while pregnant between 1948 and 1954, it was found that by age 40 offspring commonly had high levels of the stress hormone cortisol [6] and high blood pressure [7,8].  The effects of faulty maternal diets can be long-lasting.

At PerfectHealthDiet.com, we think 20% is still likely to be a bit more protein than is desirable. We would advise pregnant mothers to restrict protein to about 15% of calories and to strive to obtain 30% of calories as carbohydrates.  As long as adequate carbs are obtained, there is only a modest need for protein and as little as 10% of calories as protein may be sufficient.

Note that this advice is very close to the ratios of 30% carb, 15% protein, and 55% fat that we recommend to adults and children generally.  Pregnant women may benefit from slightly more starch and slightly less protein than others; but on the Perfect Health Diet, pregnancy should not require a significant change in eating habits.

[1] Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy. 2007 Nov-Dec;3(6):597-9. http://pmid.us/17912023.

[2] Goldman HI et al. Clinical effects of two different levels of protein intake on low-birth-weight infants. J Pediatr. 1969 Jun;74(6):881-9. http://pmid.us/5781798. Goldman HI et al. Effects of early dietary protein intake on low-birth-weight infants: evaluation at 3 years of age. J Pediatr. 1971 Jan;78(1):126-9. http://pmid.us/5539071. Goldman HI et al. Late effects of early dietary protein intake on low-birth-weight infants. J Pediatr. 1974 Dec;85(6):764-9. http://pmid.us/4472449.

[3] Koletzko B et al; European Childhood Obesity Trial Study Group. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009 Jun;89(6):1836-45. http://pmid.us/19386747.

[4] Speth JD. Protein selection and avoidance strategies of contemporary and ancestral foragers: unresolved issues. Philos Trans R Soc Lond B Biol Sci. 1991 Nov 29;334(1270):265-9; discussion 269-70. http://pmid.us/1685584.

[5] Kalhan SC. Protein metabolism in pregnancy. Am J Clin Nutr. 2000 May;71(5 Suppl):1249S-55S. http://pmid.us/10799398.

[6] Herrick K et al. Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: relation to adult cortisol concentrations in the offspring. J Clin Endocrinol Metab. 2003 Aug;88(8):3554-60. http://pmid.us/12915635.

[7] Campbell DM et al. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol. 1996 Mar;103(3):273-80. http://pmid.us/8630314.

[8] Shiell AW et al. High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension. 2001 Dec 1;38(6):1282-8. http://pmid.us/11751704.

It’s easy to be malnourished

I recently came across a paper analyzing the micronutrient deficiencies in four popular diets – the South Beach Diet, the Atkins for Life Diet, the DASH diet, and the Best Life Diet.

According to this paper [1], none of these diets provides the RDA for more than 15 of the 27 micronutrients studied.  Some nutrients were lacking in all four diets. The diets averaged:

  • 58% of the RDA for pantothenic acid (vitamin B5).
  • 29% of the RDA for biotin.
  • 34% of the RDA for vitamin E.
  • 56% of the RDA for choline.
  • 9% of the RDA for chromium.
  • 34% of the RDA for iodine.
  • 73% of the RDA for potassium.

Of these I would take the chromium and iodine deficiencies very seriously.  These would certainly merit supplementation – indeed, in our book they are among the 8 micronutrients we strongly recommend supplementing.

Cases can also be made for supplementation of others on this list:

  • Biotin and pantothenic acid are harmless in very high doses, and extremely cheap – less than 4 cents for 500 mg pantothenic acid or 5 mg biotin.
  • Choline deficiency is widespread and there is evidence that choline supplements are very helpful for pregnant women.

More important than any specific deficiency, however, is the implication for ordinary diets.  If these comparatively healthy diets are deficient, then nearly any modern diet is likely to produce micronutrient deficiencies.

Agriculture – planting the same crops, year after year, in the same fields – tends to deplete the soil of nutrients, and hence both plant crops and crop-fed animals tend to be low in nutrition. Water treatment also removes minerals like calcium and magnesium from drinking water. 

A British study, for instance, found that copper levels in UK foods have declined by 76% in vegetables, 90% in dairy foods, and 55% in meat. [2] Some other nutrients have declined nearly as much.

It’s important to take some care, therefore, to eat a nourishing diet.  Especially nourishing foods include seaweed, green leafy vegetables, organ meats including liver, and seafoods.

Cooking style is also important:  Cooking should be done in a way that doesn’t throw away drippings from foods, but rather preserves them as a sauce or soup.  Also, very high cooking temperatures which can destroy or denature nutrients should be avoided. 

Even with these steps, supplementation is probably necessary for optimal health.  We recommend taking a daily multivitamin plus a few other supplements, notably including iodine, magnesium, vitamin D, and vitamin K2.

[1] Calton JB. Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 2010 Jun 10;7(1):24. http://pmid.us/20537171. Full text:  http://www.jissn.com/content/pdf/1550-2783-7-24.pdf.

[2] Thomas D. The mineral depletion of foods available to us as a nation (1940-2002)–a review of the 6th Edition of McCance and Widdowson. Nutr Health. 2007;19(1-2):21-55. http://pmid.us/18309763. Hat tip Robert Andrew Brown, http://wholehealthsource.blogspot.com/2010/04/copper-and-cardiovascular-disease.html.